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Abstract

In this paper, we study the pressure gradient driven transient flow of
an incompressible Newtonian liquid in micro-annuals under a Navier slip
boundary condition. By using the Fourier series expansion in time and Bessel
functions in space, an exact solution is derived and is shown to include some
existing known results as special cases. By analysing the exact solution, it is
found that the influences of boundary slip on the flow behaviour are qualitatively
different for different types of pressure fields driving the flow. For pressure
fields with a constant pressure gradient, the flow rate increases with the increase
in the slip parameter l almost linearly when l is large; while, for pressure fields
with a wave form pressure gradient within a certain frequency range, as the
slip parameter l increases, the amplitude of the flow rate increases first and
then approaches a constant value when l becomes sufficiently large. It is also
found that to achieve a given flow rate, one could have different designs and
the graphs for the design are presented and discussed in this paper.

PACS numbers: 47.15.Rq, 47.60.Dx

1. Introduction

Recent advances in nanotechnologies have led to the development of many biological and
engineering devices and systems in micro and nanoscales [18], such as biochemical lab-on-
the-chip systems, micro-electromechanical systems, fuel cell devices, drug delivery systems
[30], biological sensing and energy conversion devices [23]. Most of these devices and systems
involve fluid flow through microchannels, referred to as microflows [2, 12, 14, 15]. As the
behaviour of the fluid flow in these systems determines the functional characteristics of the
systems, it is extremely important to study the mechanism of microflows so as to develop a
better understanding [1, 11, 35].
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From the fundamental principles of continuum mechanics, the flow of incompressible
Newtonian fluids is governed by the continuity equation, the Navier–Stokes equations and a
set of boundary conditions. Traditionally the so-called no-slip boundary condition is used,
namely the fluid velocity relative to the solid is assumed to be zero on the fluid–solid interface
[29]. However, evidences of slip of a fluid on a solid surface have been reported [25].
Chauveteau [7], Tuinier and Taniguchi [34], and Vargas and Manero [9] studied the flow of
polymer solutions in porous media and showed that the apparent viscosity of the fluids near
the wall is lower than that in the bulk and consequently the fluids can exhibit the phenomenon
of apparent slip on the wall. More recently, experiments in micrometer scale and molecular
dynamic simulations have shown that the flow of fluids in microsystems is granular and slip
can occur on the fluid–solid interface [3, 4, 31, 40, 45]. Hence, under certain conditions
such as those investigated in [33, 35], the no-slip condition is not acceptable for fluid flows
in microchannels. On the other hand, many experimental results have provided evidences to
support the Navier slip condition [16, 25, 42], namely the fluid velocity component tangential
to the solid surface, relative to the solid surface, is proportional to the shear stress on the fluid–
solid interface. The proportionality is called the slip length which describes the slipperiness
of the surface [19, 42]. Some attempts have also been made to derive alternative formulae for
the determination of the slip length [32], and to use nanotechnologies for the surface treatment
of microchannels so as to achieve large slip for maximizing the transport efficiency of fluids
through microchannels. Based on the nature of boundary slip of microflows, we will use the
Navier slip condition for the fluid flow in micro-annuals.

Over the last couple of decades, many investigations have been made to study various
flow problems of Newtonian and non-Newtonian fluids with the no-slip boundary condition or
a slip boundary condition [5, 8, 10, 20, 21, 24, 27, 28, 43, 44]. Although exact and numerical
solutions to many flow problems of Newtonian fluids under the no-slip assumption have been
obtained and are available in the literature [29, 36–38], very few exact solutions for the slip
case are available in the literature. Recently, some steady-state slip solutions for the flows
through a pipe, a channel and an annulus have been obtained [22, 41]. An exact solution for
the transient flow through microtubes has also been derived and discussed in the paper [39].

Motivated by the previous work, we study the transient flow of an incompressible
Newtonian liquid through a micro-annual with a slip boundary in this paper. The work is
basically an extension of our previous work in [39]. Here we should address that micro-
devices with annulus geometry, such as microreactor with multicylindrical mixer structure
[13], are extremely difficult to fabricate using current microfabrication technology. The rest of
this paper is organized as follows. In the following section, we first define the problem and then
present its mathematical formulation. In section 3, we solve the underlying boundary value
problem to derive the exact solution for the velocity field and show that the solution includes
some existing known solutions as special cases. In section 4, we derive exact solutions for the
flow rate, the rate of deformation tensor and the stress field in the fluid using the exact solution
of the velocity field derived in section 3. In section 5, an analysis is carried out to study
the influence of the slip parameter on the flow behaviour. Finally, a conclusion is given in
section 6.

2. Mathematical formulation

Consider the transient flow of an incompressible Newtonian liquid through a circular annual
of inner radius a and outer radius R with the z-axis being in the axial direction as shown in
figure 1. We limit our analysis to fully developed flow and assume that the slip length does not
change along the flow. The field equations governing the flow include the continuity equation
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Figure 1. The coordinate system used.

and the Navier–Stokes equations. As the flow is axially symmetric and fully developed, there
is no swirling flow and the velocity components in the radial and transverse directions vanish,
namely v = (vr , vθ , vz) = (0, 0, u). Thus, from the continuity equation and the Navier–Stokes
equations, as shown in [39], u must satisfy the following equation:

μ

ρ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
− ∂u

∂t
= 1

ρ

∂p

∂z
. (1)

Since a wide range of functions can be expressed in terms of Fourier series, in this work,
we consider the fluid flow driven by the pressure field with a pressure gradient that can be
expressed by the Fourier series

∂p

∂z
= a0 +

∞∑
n=1

[an cos(nωt) + bn sin(nωt)] := q(t). (2)

To completely define the problem, the field equations must be supplemented by the
boundary condition. In this work, we use the Navier slip boundary condition. That is, on the
solid–fluid interfaces r = a (inner surface) and r = R (outer surface), the axial fluid velocity,
relative to the solid surface, is proportional to the shear stress on the interface. For Newtonian
fluids, the shear stress is related to the shear strain rate by σrz = μ∂u

∂z
where μ is the fluid

viscosity. Thus, for the case where the rigid micro-annulus is fixed spatially, the Navier slip
condition can be written in the form of

u(a, t) = ±l1
∂u

∂r
(a, t), u(R, t) = ±l2

∂u

∂r
(R, t) (3)

where l1 and l2 denote the slip parameters of the inner surface and the outer surface, respectively.
In this study, we assume that the slip parameter does not change along the flow. The signs
for the terms on the right-hand sides of the above equations have been discussed by various
authors. In the literature, all the four possible cases are considered and the physically feasible
cases are determined based on the solution derived. Here, we give a different method for
choosing the sign for the terms on the right-hand sides of the equations in (3) without the need
for finding the solution first, as detailed below.

From the physics of fluids, when the fluid moves relative to the solid surface in the
tangential direction of the solid surface, the relative movement of the fluid particles will be
restricted by a resistance force acting on the opposite direction of the relative movement. Let
the unit outward normal vector of the surface S of the fluid be n = (n1, n2, n3), and the positive
tangential direction be t = (t1, t2, t3). Suppose the stress tensor in the fluid is σij , then the
surface traction on S is Xi = σjinj which has the tangential component ft = Xiti = σjinj ti ,
where we have used the index notation with the repeated literal indices representing summation
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over the index range. On the other hand, the velocity component of the fluid relative to the
solid surface in the tangential direction is vt − vst = (vi − vsi)ti . Hence the Navier-type
boundary condition for Newtonian fluids can be written as

vt − vst = − lft

μ
or (vi − vsi)ti = − l(σjinj ti)

μ
. (4)

The negative sign in the above equations is to indicate that the direction of the relative tangential
velocity is opposite to the surface traction force exerted on the fluid by the solid surface. Now
for our problem in the (r, θ, z) system, v = (0, 0, u), vs = (0, 0, 0). For the outer surface
r = R, n = (1, 0, 0) and t = (0, 0, 1), and so vt − vst = viti = u and ft = σrz = μ∂u

∂r
and

consequently (3)2 for the outer surface takes the following form:

u(R, t) = −l2
∂u

∂r
(R, t). (5)

For the inner surface r = a, n = (−1, 0, 0) and t = (0, 0, 1), and so vt − vst = viti = u and
ft = −σrz = −μ∂u

∂r
and consequently (3)1 for the inner surface takes the following form:

u(a, t) = l1
∂u

∂r
(a, t). (6)

It should also be addressed here that for li = 0, conditions (5)–(6) reduce to the no-slip
boundary condition; while, for li → ∞, equations (5) and (6) give the surface traction
condition for perfectly smooth surfaces, i.e., σrz(a, t) = σrz(R, t) = 0.

Remark 2.1. Formula (4) is more precise than (3) and is more suitable for application in
numerical analysis.

3. Exact solution for the transient velocity field

To solve equation (1), first we use a complex number to express the above Fourier series by
exponential functions, namely

∂p

∂z
= Re

( ∞∑
n=0

cneinωt

)
(7)

where cn = an − bni and einωt = cos(nωt) + i sin(nωt).
From the linear property of equation (1), we have u = ∑∞

n=0 Re(un), where un is defined
by

μ

ρ

(
∂2un

∂r2
+

1

r

∂un

∂r

)
− ∂un

∂t
= cn

ρ
einωt . (8)

As in [39], let

un = fn(r) einωt . (9)

Then, we have

μ

ρ

(
∂2fn

∂r2
+

1

r

∂fn

∂r

)
− inωfn = cn

ρ
. (10)

For n = 0, equation (10) has the following general solution:

f0(r) = (A1 + A2 ln r) +
c0

4μ
r2. (11)
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For n � 1, equation (10) can be written as

r̄2 ∂2fn

∂r̄2
+ r̄

∂fn

∂r̄
+ r̄2fn = cn

β2
nμ

r̄2, (12)

where β2
n = nβ2 in which β2 = − ρω

μ
i, and r̄ = βnr .

As the associated homogeneous equation is the zero-order Bessel equation, equation (12)
has the following general solution:

fn = dnJ0(r̄) + enY0(r̄) +
cn

β2
nμ

= dnJ0(βnr) + enY0(βnr) +
cni

ρnω
, (13)

where dn and en are integration constants; J0 and Y0 denote the zero-order Bessel functions of
the first and second kinds, respectively. Thus, we have

u=
∞∑

n=0

Re(un) = A1 + A2 ln(r) +
a0

4μ
r2 +

∞∑
n=1

Re

[(
dnJ0(βnr) + enY0(βnr) +

cni

ρnω

)
einωt

]
,

(14)

from which we obtain

∂u

∂r
= A2

1

r
+

a0

2μ
r − Re

∞∑
n=1

[dnJ1(βnr) + enY1(βnr)]βn einωt (15)

where, in the above formulation, we have used the identities

dJ0(x)

dx
= −J1(x),

dY0(x)

dx
= −Y1(x). (16)

Substituting (14) and (15) into the boundary conditions (5), (6) yields(
A1 + A2 ln(a) +

a0

4μ
a2 − A2

1

a
l1 − a0

2μ
al1

)
+ Re

∞∑
n=1

[
dnJ0(βna) + enY0(βna)

+
cni

ρnω
+ l1βndnJ1(βna) + l1βnenY1(βna)

]
einωt = 0

(
A1 + A2 ln(R) +

a0

4μ
R2 + A2

1

R
l2 +

a0

2μ
Rl2

)
+ Re

∞∑
n=1

[
dnJ0(βnR) + enY0(βnR)

+
cni

ρnω
− l2βndnJ1(βnR) − l2βnenY1(βnR)

]
einωt = 0.

(17)

For the above equations to hold for any instant of time t, we require that

A1 + A2

(
ln(a) − 1

a
l1

)
= − a0

4μ
(a2 − 2al1),

A1 + A2

(
ln(R) +

1

R
l2

)
= − a0

4μ
(R2 + 2Rl2),

dn[J0(βna) + l1βnJ1(βna)] + en[Y0(βna) + l1βnY1(βna)] = − cni

ρnω
,

dn[J0(βnR) − l2βnJ1(βnR)] + en[Y0(βnR) − l2βnY1(βnR)] = − cni

ρnω
.

(18)

5



J. Phys. A: Math. Theor. 42 (2009) 065206 B Wiwatanapataphee et al

Solving the above system of equations for A1, A2, dn and en, and then submitting them into
(14), we obtain

u = −a0R
2

4μ

(
1 −

( r

R

)2
+

2l2

R
+

1 − (
a
R

)2
+ 2

(
l2
R

+ al1
R2

)
ln R

a
+ l2

R
+ l1

a

(
ln

r

R
− l2

R

))

− Re
∞∑

n=1

cni einωt

ρnω

{
N1

D
J0(βnr) +

N2

D
Y0(βnr) − 1

}
(19)

where

N1 = N1(a, R, βn, l1, l2) = Y0(βnR) − Y0(βna) − [l2Y1(βnR) + l1Y1(βna)]βn,

N2 = N2(a, R, βn, l1, l2) = J0(βna) − J0(βnR) + [l1J1(βna) + l2J1(βnR)]βn,

D = D(a,R, βn, l1, l2) = J0(βna)Y0(βnR) − J0(βnR)Y0(βna)

+ [J1(βna)Y0(βnR) − J0(βnR)Y1(βna)]l1βn

+ [J1(βnR)Y0(βna) − J0(βna)Y1(βnR)]l2βn

+ [J1(βnR)Y1(βna) − J1(βna)Y1(βnR)]l1l2β
2
n. (20)

Remark 3.1. If l1 = l2 = 0, solution (19) becomes

u = −a0R
2

4μ

{
1 −

( r

R

)2
+

[
1 −

( a

R

)2
]

ln(r/R)

ln(R/a)

}
− Re

∞∑
n=1

cni einωt

ρnω

×
{

[Y0(βnR) − Y0(βna)]J0(βnr) + [J0(βna) − J0(βnR)]Y0(βnr)

J0(βna)Y0(βnR) − J0(βnR)Y0(βna)
− 1

}
(21)

which is the solution for the traditional no-slip case [17].

Remark 3.2. If a0 = −A ∈ R, cn = 0 for all n � 1, l1/R = l2/R = l, a = κR, u = −vz
a0R

2

4μ

then the solution reduces to a recent result given in equation (19) in [22].

4. Exact solution of the flow rate and the stress field

From the axial velocity solution (19), the flow rate can be determined as

Q(t) =
∫ R

a

2πru(r, t) dr = Q0 +
∞∑

n=1

Qn, (22)

where Q0 and Qn are, respectively, the flow rate corresponding to the constant component
and the nth harmonic component of the pressure gradient and

Q0 = −a0πR4

8μ

{[
1 −

( a

R

)2
] [

1 −
( a

R

)2
+

4l2

R

]
− 1 − (

a
R

)2
+ 2

(
l2
R

+ al1
R2

)
ln R

a
+ l2

R
+ l1

a

×
[

1 −
( a

R

)2
+

2l2

R
− 2l2a

2

R3
+ 2

( a

R

)2
ln

a

R

]}
, (23)

Qn = −Re

{[
N1

D

∫ R

a

rJ0(βnr) dr +
N2

D

∫ R

a

rY0(βnr) dr − 1

2
(R2 − a2)

]
2πcni einωt

nρω

}
.

(24)
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From the identities
d

dx
[xJ1(x)] = xJ0(x),

d

dx
[xY1(x)] = xY0(x), (25)

we have ∫ R

a

rJ0(βnr)dr = 1

βn

[RJ1(βnR) − aJ1(βna)],

∫ R

a

rY0(βnr)dr = 1

βn

[RY1(βnR) − aY1(βna)].

(26)

Thus, by substituting the above formula into (22), we have

Qn = −Re
2πcni einωt

nρω

{
N1

βnD
[RJ1(βnR) − aJ1(βna)]

+
N2

βnD
[RY1(βnR) − aY1(βna)] − 1

2
(R2 − a2)

}
. (27)

Remark 4.1. From the above solution form, it is not immediately clear whether the transient
flow rate increases as l1 and/or l2 increases, and thus we will study this in section 5.

The stress in the fluid is related to the velocity field by the following constitutive equations:

σ = −pI + 2μ d, (28)

while the rate of the deformation tensor is related to the velocity vector by

d = 1
2 (∇v + (∇v)T ), (29)

where σ ≡ (σij ) and d = (dij ) denote, respectively, the second-order stress tensor and the
rate of the deformation tensor, I is an identity matrix. As v = (0, 0, u(r, t)), we have

d = 1

2

⎛
⎝ 0 0 ∂u/∂r

0 0 0
∂u/∂r 0 0

⎞
⎠ . (30)

From the above formula and using (19), we obtain drr = dθθ = dzz = drθ = dθz = 0 and

drz = −a0R

8μ

[
−2r

R
+

1 − (
a
R

)2
+ 2

(
l2
R

+ al1
R2

)
ln R

a
+ l2

R
+ l1

a

R

r

]
+ Re

∞∑
n=1

cni einωt

2ρnω

×
{

N1(a, R, βn, l1, l2)

D(a,R, βn, l1, l2)
βnJ1(βnr) +

N2(a, R, βn, l1, l2)

D(a,R, βn, l1, l2)
βnY1(βnr)

}
. (31)

Hence from the constitutive equations (28), we obtain

σrr = σθθ = σzz = −p = q(t)z + p0(t), σrθ = σθz = 0

σrz = −a0R

4

[
−2r

R
+

1 − (
a
R

)2
+ 2

(
l2
R

+ al1
R2

)
ln R

a
+ l2

R
+ l1

a

R

r

]
+ Re

∞∑
n=1

cnμi einωt

ρnω

×
{

N1(a, R, βn, l1, l2)

D(a,R, βn, l1, l2)
βnJ1(βnr) +

N2(a, R, βn, l1, l2)

D(a,R, βn, l1, l2)
βnY1(βnr)

}
(32)

where q(t) is as given in (2) while p0(t) is arbitrary and can be chosen to meet certain pressure
conditions.
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5. Discussions of the influence of boundary slip on the flow behaviour

With the exact solutions obtained in the previous sections, in this section, we discuss the
influences of the slip length on velocity, flow rate and stresses in the fluid. As the solution for
a general pressure field given by (2) is the superposition of the solution due to the constant
pressure gradient and the solutions due to the sine and cosine wave form pressure gradients,
without loss of generality, we consider here two different cases of driving pressure fields in
this discussion. The first case is for a pressure field with a constant pressure gradient, while
the second one is for a pressure field with a sine wave form pressure gradient. For convenience
in the discussion, we introduce the following dimensionless variables:

r∗ = r

R
, k = a

R
, l = l2

R
, λ = l1

l2
, t∗ = ωt

2π
, β∗ = βR. (33)

Case 1: dp

dz
= a0. For this case, cn = 0 for all n � 1. Then from (19), (22)–(23) and (32), we

obtain the following normalized velocity, normalized flow rate and shear stress:

u∗ = − 4μ

a0R2
u =

[
1 − r∗2 + 2l +

1 − k2 + 2(1 + kλ)l

ln 1
k

+
(
1 + λ

k

)
l

(ln r∗ − l)

]
, (34)

Q∗ = − 8μ

a0πR4
Q

= (1 − k2)(1 − k2 + 4l) − 1 − k2 + 2(1 + kλ)l

ln 1
k

+
(
1 + λ

k

)
l

[(1 − k2)(1 + 2l) + 2k2 ln(k)] (35)

σ ∗
rz = − 4

a0R
σrz =

[
−2r∗ +

1 − k2 + 2(1 + kλ)l

ln 1
k

+
(
1 + λ

k

)
l

1

r∗

]
. (36)

It should be addressed here that for l = 0, the solution (34) reduces to the solution for the
no-slip case [17]. To study the influence of l on the velocity, we examine the derivative of u∗

with respect to l. From (34), we have

du∗

dl
= [a(k, λ, r∗) + b(k, λ)l + c(k, l)l2]

[
ln

1

k
+

(
1 +

λ

k

)
l

]−2

, (37)

where

a(k, λ, r∗) = (2 ln(k) + 1 − k2)(ln(k) − ln(r∗)) − λk ln(r∗)
(

2 ln(k) +
1

k2
− 1

)
,

b(k, λ) = 4λln(k)

(
k − 1

k

)
, c(k, λ) = 2λ

(
1

k
− k

)(
1 +

λ

k

)
As λ > 0, 0 < k < 1, and k � r∗ � 1, we can easily prove that a > 0, b > 0 and c > 0, and
hence du∗

dl
> 0 for l � 0, which means that the velocity is a monotonically increasing function

of l. Similarly, we can also prove that the flow rate also increases monotonically as l increases
from zero. Also, for l >> max

{
1, ln 1

k

}
, from (35), we have

∂Q∗
∂l

≈ 4(1 − k2)

(
1 − 1 + kλ

1 + λ/k

)
> 0

which indicates that Q* increases almost linearly with increasing l when l is sufficiently large.
To further demonstrate the characteristics of the variation of the flow rate with l and k,

we show the solution (35) graphically in figure 2 for the case where both the inner and outer
surfaces have the same smoothness, i.e. λ = 1. The result shows that there exist different (l, k)

8
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(a) (b)

Figure 2. Variation of the flow rate with l and k obtained from solution (35) with λ = 1:
(a) 3D graph for Q∗(k, l); (b) contour plot of Q∗(k, l) on the (k, l) plane.

parameter designs for obtaining a given fixed flow rate, which opens a way for the optimal
design of the annual. The result also shows that the influence of l on the flow rate is more
significant for lower k values. It is also interesting to note that the velocity field in the annual
is not a simple superposition of the no-slip solution and a rigid body translation, as is in the
circular microtubes [39].

Case 2: dp

dz
= b1 sin(ωt). For this case, a0 = 0, c1 = −b1i, cn = 0 for all n � 2. As

β2 = − ρω

μ
i = ρω

μ
e−π i/2, we have

β =
√

ρω

2μ
(1 − i) = β̄

R
(1 − i),

1

β
= R

2β̄
(1 + i), β∗ = β̄(1 − i), (38)

where β̄ = R
√

ρω

2μ
is a dimensionless parameter. Then, by using the dimensionless variables

in (33), we have from (19), (27) and (32) that

u∗ = − ρ

b1
u

= Re

{[
N1

D
J0(β

∗r∗) +
N2

D
Y0(β

∗r∗) − 1

]
1

ω
e2πt∗i

}
(39)

Q∗ = − ρ

2πb1R2
Qn

= Re

{[
N1

β∗D
[J1(β

∗) − kJ1(β
∗k)] +

N2

β∗D
[Y1(β

∗) − kY1(β
∗k)] − 1

2
(1 − k2)

]
1

ω
e2πt∗i

}
(40)

σ ∗
rz = ρR

μb1
σrz

= Re

{[
N1

D
β∗J1(β

∗r∗) +
N2

D
β∗Y1(β

∗r∗)
]

1

ω
e2πt∗i

}
(41)
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where

N1 = Y0(β
∗) − Y0(β

∗k) − [Y1(β
∗) + λY1(β

∗k)]lβ∗,

N2 = J0(β
∗k) − J0(β

∗) + [λJ1(β
∗k) + J1(β

∗)]lβ∗,

D = J0(β
∗k)Y0(β

∗) − J0(β
∗)Y0(β

∗k) + [J1(β
∗k)Y0(β

∗) − J0(β
∗)Y1(β

∗k)]λlβ∗

+ [J1(β
∗)Y0(β

∗k) − J0(β
∗k)Y1(β

∗)]lβ∗

+ [J1(β
∗)Y1(β

∗k) − J1(β
∗k)Y1(β

∗)]λl2β∗2.

(42)

For convenience in discussion, let

N1

ωβ∗D
[J1(β

∗) − kJ1(β
∗k)] +

N2

ωβ∗D
[Y1(β

∗) − kY1(β
∗k)] := a + bi, (43)

then equation (40) can be written as

Q∗ = Q∗
m(k, l) sin(2πt∗ + φ(k, l)),

where Q∗
m(k, l) and φ(k, l) are respectively the amplitude and phase angles of the normalized

transient flow rate defined by

Q∗
m(k, l) =

((
a − 1

2ω
(1 − k2)

)2

+ b2

)1/2

φ(k, l) = arctan

(
1

2ω
(1 − k2) − a

b

)
.

(44)

In the following, we first study the influence of the angular frequency ω on the amplitude of
the transient flow rate Q∗

m(k, l), and compare the transient solutions with the quasi steady-state
solution which is obtained by neglecting the time derivative term in equation (1) to yield

u∗ = − ρ

b1
u = ρR2

4μ

[
1 − r∗2 + 2l +

1 − k2 + 2(1 + kλ)l

ln 1
k

+
(
1 + λ

k

)
l

(ln r∗ − l)

]
sin(2πt∗) (45)

and

Q∗
s = − ρ

2πb1R2
Q

= ρR2

16μ

{
(1 − k2)(1 − k2 + 4l) − 1 − k2 + 2(1 + kλ)l

ln 1
k

+ (1 + λ
k
)l

[(1 − k2)(1 + 2l) + 2k2 ln(k)]

}

× sin(2πt∗). (46)

Figure 3 shows the influence of l on Q∗
m for a different angular frequency ω. Obviously, as the

angular frequency decreases, the amplitude of the transient flow rate increases and the transient
solution converges towards the quasi steady-state solution. It is also noted that the dependence
of the amplitude of the transient flow rate on l is very different for different frequencies. At
high frequency, the amplitude of the flow rate increases initially as l increases but tends to a
constant value once l becomes sufficiently large. On the other hand, at low frequency the flow
rate continues to increase with l and depends on l almost linearly for large l values.

Next, as an illustration, we investigate in more detail the influence of k and l on the flow
rate for the frequency, ω = 5.0 × 10−4μ/ρR2, corresponding to a state that is not so close to
the quasi steady state as shown in figure 3. We consider here the case where both the inner and
outer surfaces have the same smoothness, i.e λ = 1. For this case, (44) gives the amplitude of
the normalized flow rate as a function of the variables l and k which is shown graphically in
figure 4. From the results, various findings can be obtained.
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Figure 3. Influence of l on the quasi steady-state solution Q∗
s and the transient solution Q∗

m

under different frequencies ω = αμ/ρR2 with five different α values: α = 5.0 × 10−3 (dash-box
line), α = 1.0 × 10−3 (dash-circle line), α = 5.0 × 10−4 (dash-diamond line), α = 2.5 × 10−4

(dash-cross line) and α = 5.0 × 10−5 (dash line).

(a) (b)

Figure 4. Variation of the amplitude of the flow rate with l and k obtained from solution (44) with
λ = 1, R = 1.0 × 10−5, ρ = 1060, μ = 0.001, ω = 5.0 × 10−4μ/ρR2: (a) 3D graph for Q∗

m, (b)
contour plot of Q∗

m on the (k, l) plane.

(i) Unlike for the case of constant pressure gradient, the flow rate in this case no longer
increases linearly with l for large l values. For each fixed k value, as l increases, the flow
rate increases first and then tends to a constant once l becomes large. The critical l value at
which the amplitude of the flow rate tends to a constant value decreases with the increase
of the k value.

(ii) The amplitude of the flow rate decreases as k increases, as shown in figure 5. This is
because the increase of k not only reduces the cross-section area for the fluid flow, but
also leads to lower slip velocity on the solid surface as shown in figure 6.
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Figure 5. Variation of the amplitude of the flow rate with l for ω = 5.0 × 10−4μ/ρR2 and various
different k values in case 2: k = 0.1 (solid line), k = 0.3 (dash line), k = 0.5 (dash-cross line),
k = 0.7 (dash-box line).

Figure 6. Variations of the amplitude of the slip velocity u∗
m on the outer surface r∗ = 1 with l

for ω = 5.0 × 10−4μ/ρR2 and various different k values in case 2: k = 0.1 (solid line), k = 0.3
(dash line), k = 0.5 (dash-cross line), k = 0.7 (dash-box line).

(iii) As for the constant case, one could have different (k, l) designs to achieve a given flow
rate and figure 4(b) provides a tool for the design.

(iv) The influence of l on the flow rate becomes less and less significant as k increases.

6. Conclusions

In this paper, we derive the exact solutions for the pressure gradient driven transient flow of an
incompressible Newtonian liquid through a circular annual with a Navier slip boundary. Based
on the analytical expressions of the solutions, we analyse the influence of the slip parameter l
and the geometry of the cross-section on the flow rate of fluid through the annual. The study
shows that
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(i) The influence of boundary slip on the flow through the annual is different for different
types of pressure gradients. For flows driven by a constant pressure gradient, the flow
rate always increases with the slip parameter l and achieves a linear increase rate for
large l value; while, for the flows driven by the wave form pressure gradient with high
frequency, the flow rate initially increases significantly as l increases from zero but tends
to a constant when l becomes sufficiently large.

(ii) To achieve a fixed value of flow rate, one could have different (k, l) designs. The
exact solutions obtained in this paper, together with the contour plots of the solutions
(figure 2(b) and figure 4(b)), provide a tool for engineers and scientists to determine the
proper (k, l) values.
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